Функция, обращающая зависимость, выражаемую данной функцией. Так, если
у = f (
x) - данная
функция, то переменная
х, рассматриваемая как
функция переменной
у,
х = φ (
y), является обратной по отношению к данной функции
у = f (x). Например, О. ф. для
у = ax + b (а≠0) является
х = (у-b)/a, О. ф. для
у = ех является
х = ln
у и т.д. Если
х = φ(
y) есть О. ф. по отношению к
у =
f (x), то и
у =
f (x) есть О. ф. по отношению к
х = φ(
y). Областью определения О. ф. является область значений данной функции, а областью значений О. ф.- область определения данной. Графики двух взаимно обратных функций
у = f (x) и у = φ
(x) (где независимое переменное обозначено одной и той же буквой
х), как, например,
у = ax +
b и
у = (х-b)/a, у = ех и
у = ln
х, симметричны по отношению к биссектрисе
у = х первого и третьего координатных углов.
Функция,
обратная по отношению к однозначной функии, может быть многозначной (ср., например, функции
х2 и
). Для однозначности О. ф. необходимо и достаточно, чтобы данная
функция у =
f (x) принимала различные значения для различных значений аргумента. Для непрерывной функции последнее условие может выполняться только в том случае, если данная
функция монотонна (имеются в виду функции действительного аргумента, принимающие действительные значения). О. ф. по отношению к непрерывной и монотонной функции однозначна, непрерывна и монотонна.
Если данная функция кусочно монотонна, то, разбивая область её определения на участки её монотонности, получают однозначные ветви О. ф. Так, одним из участков монотонности для sin х служит интервал - π/2< x < π/2; ему соответствует т. н. главная ветвь arc sin х обратной функции Arc sin х. Для пары однозначных взаимно обратных функций имеют место соотношения φ[f (x)]=x и f [φ(x)] = х, первое из которых справедливо для всех значений х из области определения функции f (x), а второе - для всех значений х из области определения функции φ (x); например, elnx = х (х > 0), 1n (ex) = х (- ∞ < х < ∞). Иногда функцию, обратную к f (x) =у, обозначают f- -1(y) = х, так что для непрерывной и монотонной функции f (x):
F -1[f (x)]=f [f -1) x)]=x.
Вообще же f --1[f (x)] представляет собой многозначную функцию от х, одним из значений которой является х; так, для f (x) = x2, х (≠ 0) является лишь одним из двух значений f --1[f (x)] = √x2 (другое: -х); для f (x) = sin х, х является лишь одним из бесконечного множества значений
f- -1[f (x)] = Arc sin [sin x] = (-1) n x + nπ,
n = 0, ± 1, ± 2,....
Если у = f (x) непрерывна и монотонна в окрестности точки х = x0 и дифференцируема при х = x0, причём f'(x0) ≠ 0, то f --1(y) дифференцируема при у = у0 и
(формула дифференцирования О. ф.). Так, для -π/2 < х < π/2, у = f (x) = sin х непрерывна и монотонна, f'(x) = cos х ≠ 0 и f- -1(y)= arc sin у (-1< y <1) дифференцируема, причём
где имеется в виду положительное значение корня (так как cos х > 0 для -π/2 < х < π/2).